The Map as a Fundamental Source in the Memory of the World

Tracey P. Lauriault¹ and D. R. Fraser Taylor²

¹Postdoctoral Fellow, Geomatics and Cartographic Research Centre (GCRC), Carleton University, tlauriau@gmail.com
²FRSC, Distinguished Research Professor and Director of the Geomatics and Cartographic Research Centre, Carleton University; member of the CODATA Data at Risk Task Group, fraser_taylor@carleton.ca

Abstract

Maps and spatial information have been fundamental facets of the memory of societies from all over the world for millennia, and their preservation should be an integral part of government strategies in managing digital data. The digital era in map-making is a relatively recent activity; the first digital maps date from the 1960s. Digital mapping has accelerated very rapidly over the last decade and is now ubiquitous with an increasing amount of spatially referenced information being created by nongovernmental organizations, academia, the private sector and government, as well as by social networks and citizen scientists. Unfortunately, despite that explosion of digital mapping little or no attention is being paid to preservation. As a result, the very maps that have been such a fundamental source of scientific and cultural information are now seriously at risk. Already we are losing map information faster than it is being created, and the loss of that central element of the cultural heritage of societies all over the world is a serious concern. There has already been a serious loss of maps; the Canada Land Inventory and the 1986 BBC Domesday Project are only two such casualties, and mapping agencies all over the world are struggling to preserve maps in the new digital era. It is somewhat paradoxical that it is easier to get maps that are hundreds, and in some cases thousands, of years old than maps of the late 20th and early 21st centuries. This paper examines the opportunities and challenges of preserving and accessing digital maps, atlases and geospatial information, all of which are Canada’s cultural and scientific knowledge assets.

Authors

Dr. Tracey P. Lauriault, is a Postdoctoral Fellow at the Geomatics and Cartographic Research Centre working on the SSHRC Partnership Development Project entitled Mapping the Legal and Policy Boundaries of Digital Cartography in collaboration with the Centre for Law, Technology and Society; the Canadian Internet Public Policy Clinic and Natural Resources Canada. She also participates in activities and represents the GCRC on topics related to the access to and preservation of data. As a citizen she is an open data advocate and is the co-founder of civicaccess.ca and datalibre.ca.

Dr. Professor Taylor is a Distinguished Research Professor of International Affairs and Geography and Environmental Studies at Carleton University, Canada and is also Director of the Geomatics and Cartographic Research Centre. He is a Fellow of the Royal Society of Canada and is widely recognized as one of the world's leading cartographers. Dr. Taylor's main research interests in cartography lie in the application of geographic information processing to the analysis of socio-economic issues and the presentation of the results in the form of cybercartographic atlases. Cybercartography is an innovative new concept which he first introduced in 1997. His current funded research involves working with aboriginal and Inuit communities to empower these communities to express their perceptions of their own environmental and socio-economic reality in new ways utilizing the Cybercartographic Atlas Framework. This includes the innovative open source software called Nunaliit. Dr. Taylor is Chair of the International Steering Committee for Global Mapping (ISCGM) and the International Advisory Group on the Arctic Spatial Data Infrastructure, he is also a member of the Mapping Africa for Africans Working Group of the
International Cartographic Association, a member of the Joint Board of the Geospatial Information Societies and a member of the UN initiative on Global Geospatial Information Management.

1. Introduction

Maps do more than help us locate things. Maps and atlases, like books, reports, and archival records, enable us: to understand the territorial evolution of our nations, to see how colonial surveyors drew property boundaries, to visualize the spaces negotiated in treaties, and to assess the distribution of population and national resources. They can model climate change, the economy, or display the spatial relationships between cities, infrastructure and society. Maps inform planning, policy and economic decisions, while also shaping how we imagine spaces. They delight, are repositories of cultural and scientific knowledge and are a key part of our collective geographical memories.

In Canada, all levels of government create maps. At the Federal level, Natural Resources Canada (NRCan) produces, acquires and maintains the largest collection of maps, satellite and radar imagery, air photos, geospatial datasets, and publishes the *Atlas of Canada*. These are disseminated via geospatial data portals, map servers, and special programs such as *GeoGratis*. NRCan is also home to Canada’s Geospatial Data Infrastructure (CGDI), which comprises the open and interoperable standards, specifications, practices, technology, framework data, operational policies and institutional environment to disseminate Canada’s geospatial data assets on the Internet. Numerous other federal departments also produce geospatial data.\(^1\) Geospatial data also represent the largest collection of freely accessible datasets currently being disseminated in the Treasury Board Secretariat’s (TBS) Open Data Pilot portal.\(^2\) Provincial and territorial governments also produce maps, are responsible for cadastres, and have geospatial databases to help manage transportation networks, watersheds, natural resources and to administer programs such as health and education. At the level of the city geographic information system (GIS) units can be found within information technology (IT) sections to manage infrastructure and other municipal responsibilities. Academic institutions create maps and atlases which are normally funded by government granting agencies, foundations or special programs such as the International Polar Year (IPY). Canadian non-governmental organizations (NGOs) produce maps on a variety of topics such as food security, water quality and population health. The private sector through companies such as Google, Autodesk, and ESRI is a major producer of digital maps and geomatics products in Canada and is a multi billion-dollar industry.\(^3\) The public and communities are also engaged in map-making endeavours by contributing volunteered geographic information (VGI)\(^4\) into Mashups,\(^5\) building local infrastructures,\(^6\)

1 For example the Public Health Agency of Canada; Fisheries and Oceans; Environment Canada; Aboriginal Affairs and Northern Development Canada; Citizen and Immigration and many others.
5 The Regroupement activists pour l’inclusion Québec (RAPLIQ), with Montreal Ouvert and OpenNorth collaborated to create a prototype accessibility audit of commercial establishments. People with disabilities
creating mobile device apps7, and by being engaged in participatory mapping8 or citizen science endeavours.9 Digital maps and geospatial data are ubiquitous artifacts in the 21st century.

Geospatial data, maps and atlases, have been produced for millennia,10 and are cultural, historical and scientific records of knowledge and advancement, which makes them a fundamental source in memory of the world. This source of knowledge, in its borne digital form, is however not being systematically preserved. The digital era in map making is a relatively recent phenomenon of the last fifty years11 and has accelerated very rapidly over the last decade as software has become easier to use and are less expensive, geospatial data are more accessible, organizations have opened their application programming interfaces (APIs) and Internet social networking services have proliferated.

Unfortunately, little, or no, attention is being paid to preserving maps, atlases and their related data whether created by authoritative or non-authoritative sources, as a result, these are very much at risk. Already we are losing spatial information faster than it is being created and the loss of this central part of the cultural heritage of societies all over the world is a serious concern.

This paper will consider seven related topics. It will begin by illustrating the problem by discussing two map and atlas rescue and salvage endeavours. Secondly, cybertographic atlases are now mapping traditional knowledge (TK) by applying participatory research techniques. These are considered by the Indigenous communities involved repositories of local, cultural, scientific and historical knowledge. In creating these atlases preservation is considered from the outset even though an adequate archive to ingest them has still not emerged. Thirdly, while most geospatial data in Canada are not preserved, there are some geospatial data archives and these will be discussed. Fourthly, data management (including preservation) and access has become a key policy issue in Canada and a number of national public consultations on the topic have taken place. Their outcomes will be reviewed. Fifthly, there are Canadian legislation, directives and policies, which mandate the management of government information assets, and a brief overview of those related to spatial data will be examined. Sixthly, geospatial data and maps are also official government records explicitly referred to in Canadian acts and

\begin{itemize}
 \item 7Open data initiatives make data accessible to developers who create GeoApps such as Restonet (http://restonet.ca/) which maps food inspection results; Edmonton’s Historic Buildings Android App (http://contest.apps4edmonton.ca/apps/21) or the BC Apps4ClimateChange contest apps such as Waterly (http://www.waterly.ca/) which tracks rainfall and combines these with watering restrictions providing users with a watering schedule.
 \item 8The Inuit Sea Ice Use and Occupancy Project (ISIUOP), which produced the Inuit siku (sea ice), Atlas (http://sikuatlasc/index.html) which include data contributed and mapped by Inuit hunters and elders.
 \item 9The Water and Environmental Hub (WeHub) project “is a cloud-based, open source web platform that aggregates, federates, and connects water data and information with users looking to download, analyze, model and interpret water and environmental-based information”. Citizens can upload their data to the system available at http://www.waterenvironmentalhub.ca/about/project. Also see Digital Fishers where citizens load observations into a crowdsourced database and analyze results, available at http://digitalfishers.net/ (accessed 18 August 2012).
 \item 10For example: the Bedolina and Giadighe petroglyphs at Valcamonica (2500 BC), Çatal Hüyük (6200 BC) wall paintings, the Hecataeus of Miletus Ges Periodos maps (c. 550 – 476 BCE), and Ptolemy’s World Map (circa 150).
 \item 11The Canada Geographic Information System (CGIS) developed in 1960s is recognized as the first operational GIS. Dr. Roger Tomlinson who was then based Department of Forestry and Rural Development developed it.
\end{itemize}
regulation and those for which the Minister of NRCan is responsible are discussed. Seventhly, the preservation of maps, atlases and geospatial data has been examined in Canadian research and some results are showcased. Finally, the paper will conclude by examining the key issues presented and will suggest strategies for the preservation of these cultural and scientific assets.

2. The Rescue and Salvage of the Canada Land Inventory (CLI) and the 1986 Domesday Project

The Canada Land Inventory (CLI) was initiated in 1960 by the Department of Forestry and Rural Development. In 1963 the Canadian Geographic Information System (CGIS) was developed to automate the data management and mapping of CLI data. The CGIS was the world’s first GIS, it was a milestone in the history of geographic and government computerization and it revolutionized mapping. One of the principal driving forces behind the CGIS “was the idea that the CLI maps could be interpreted and analyzed in a myriad of ways if the information could be manipulated by computers”.12 It was established “as a joint federal-provincial project to guide the development of policy on the control and management of land-based resources”.13 The CGIS ultimately grew to contain thousands of maps and unknowingly became a technology that “spawned an industry that today is worth billions of dollars”.14 The CLI was conceived to “classify lands as to their capabilities; to obtain a firm estimate of the extent and location of each land class and to encourage use of CLI data in planning”.15

The CLI was an incredibly ambitious program that mapped 2.6 million square kilometers of Canada and “the original cost of the program was in the order of 100’s of millions of dollars in the 1970’s”.16 The CGIS was both a set of electronic maps and the “computer programs that allowed users to input, manipulate, analyze, and output those maps”.17

By the late 1980s, the CGIS was no longer being used. Priorities changed, people retired, and institutional memory was fading. Numerous boxes of tapes and racks of documentation were left behind and only a few computers were capable of reading nine track tapes let alone run the programs. In 1995, an informal trans-organizational group of individuals from Statistics Canada, the National Atlas of Canada, Archives Canada and the private sector joined forces to restore it. Fortunately members of this salvage team had either formerly worked on the CGIS or had an interest in its preservation, which meant they had the requisite skills, knowledge, and more importantly they recognized the value of these data and knew that these were part of Canada’s technological and scientific heritage that could be repurposed into other applications. On June 18, 1998, the agriculturally relevant portions of the CLI were handed over on one CD and it worked flawlessly on the analytical tools built in anticipation of the new format and eventually

14 Peter Schut, Back from the Brink, (2000).
17 Schut (2000).
the CLI was distributed in the *GeoGratis* portal for free along with metadata and some text to help interpret the content. The CLI “rapidly became their most popular product”. Not all of the CLI data were saved and the cost of the effort described above was very substantial. The CLI has become the common basemap in *Atlas of Canada* maps, layers are used to train satellite imagery software to recognize land cover patterns in remotely sensed images which are then used to inform the managing of forests and agricultural areas among many others resources.

The UK 1986 Domesday project, like the CGIS, was groundbreaking and a milestone in the history of multimedia computing. It was started by the BBC in 1984 to celebrate the 900-year anniversary of the original William of Normandy 1086 Norman Domesday Survey. The 1986 Domesday project, was conceived as an ‘electronic exhibition’ displaying British life much like the Great Exhibition of 1851. It was an interactive atlas that relied on crowdsourced VGI enlisting the help of 14,000 British schools and students. School microcomputers were mobilized to collect survey data, neighbourhood stories and pictures. These data “were combined with thousands of maps, still photographs and central statistical, written and visual information”. The project was funded by the BBC and the European Commission. A national disc contained interactive national statistics, photos, newspaper and magazine clippings, virtual reality tours, and movies. The community disc, or the ‘people’s database’ was compiled by nearly 1,000,000 people, contained four by three kilometer blocks of land with photos, data and text for 80 cities. These multimedia data were georeferenced to Ordinance Survey (OS) maps, airphotos and satellite images. The hardware consisted of a BBC microcomputer with floppy disk drives and a trackball; Philips Laservision in Read Only Memory (ROM); a high-resolution colour monitor and a proprietary retrieval and analysis software. It was an easy to use, information rich, interactive database driven multimedia second generation GIS. It also put state data into the public domain, stimulated much

18 *GeoGratis* disseminates geospatial data at no cost and without restrictions to the public. It is the first open data initiative in Canada and was the first to adopt and unrestricted user licence, it is available at http://geogratis.cgdi.gc.ca/geogratis/en/index.html (accessed 21 August 2012).

19 Schut (2000).

21 To see how the CLI was used in the *Atlas of Canada*, see chapter 5 and the appendices of *Data, Infrastructures and Geographical Imaginations*, (2012) by Tracey Lauriault, PhD dissertation, Carleton University Ottawa.

26 40,000 photographs, 22,000 maps, full Ordinance Survey Coverage at 1:50 000, see Goddard and Armstrong (1986).

discussion about the emerging ‘information marketplace’ and the public versus the private sector’s rights to access public data.28

Software and hardware, however, quickly became obsolete. In the late 1990s rescue and salvage work began and, just in time, as only a couple of fully operational systems were still operative. In 1999 a consortium under the name of CAMiLEON was formed to emulate the Domesday software into modern computers and between 2002-2003 they successfully did so. In 2001 a process to reverse engineer the data began and by 2004, Adrian Pearce was able make them useable and accessible online.29 And, in 2003 high quality copies of the original discs were made and the UK National Archives re-disseminated it.30 Today the 1986 Domesday Project is available on the BBC Domesday Reloaded31 website while the content of the 1086 Domesday volumes is made available online with locations georeferenced with page citations using Google Maps in a project called the Open Domesday.32

Both the 1960’s Canada Land Inventory (CLI) and the 1986 Domesday Project were massive, expensive, national scale projects. They were technologically, scientifically and procedurally innovative marking a turning point in the history of computerization and science.33 The CLI informed the creation of wildlife reserves, legislation to protect farmland, and were base maps in ecological frameworks which still in use today.34 Both projects contributed to the geographical knowledge base of their respective nations and remain well-used, loved and important scientific records.35 In both cases their data were inseparable from their software while the 1986 Domesday data could only be viewed with BBC proprietary hardware. Hardware, storage media, and software became obsolete and teams of dedicated people were able to restore these historical records and make them available to thousands of users today. These two examples illustrate the importance of considering long-term preservation at the point of creation by implementing good record keeping practices and to have a data management strategy in place

29 For the technical details on the rescue of the 1986 Domesday see Darlington, Finney and Pearce, (2003), “Domesday Redux”.
32 Open Domesday is available at http://domesdaymap.co.uk/ (accessed 20 August 2012).
35 There were 45,373 CLI map downloads in 2011-2012 and The Province of Ontario has a very popular CLI product available on this website http://www.omafra.gov.on.ca/english/landuse/feed-in-tariffprogram.htm#3, email communication received from Odette Trottier, Natural Resources Canada, Centre for topographic information on 28 August 2012.
as projects evolve.36 Furthermore, they are arguments against the use of proprietary systems, and for the adoption of open specifications, standards and interoperability and for ‘proactive archiving’.37

3. Cybercartographic atlases as collective memory systems and community archives

While the CLI and the 1986 Domesday project exemplify the rescue and salvage efforts of legacy artefacts, there are countless examples of equally significant and technologically innovative digital maps and atlases currently being created that would be archived if a preservation infrastructure existed. The Geomatics and Cartographic Research Centre (GCRC) for instance has been actively engaged in the creation of cutting edge cybercartographic atlases for over a decade. Cybercartography “is the organization, presentation, analysis and communication of spatially referenced information on a wide variety of topics of interest and use to society in an interactive, dynamic, multimedia, multisensory and multidisciplinary format”. 38 Cybercartography also offers an unprecedented opportunity for fundamentally rethinking the way we design, produce, disseminate and use maps on the Internet, both theoretically and in practice.

The GCRC has been applying the concepts of cybercartography to map traditional knowledge in Canada’s north, traditional place names with indigenous heritage and educational institutions and geo-narratives39 surrounding treaty processes. These atlases embody the collective memories40 of those who have contributed to their creation and have become a means to record the historical, geographical, cultural and scientific facts that have been transmitted orally for centuries. These atlases are the first official

36 The InterPARES 2 Case Study on the Cybercartographic Atlas of Antarctica demonstrated that it is possible to design these aspects into systems at the point of creation, CS06 is available at http://www.interpares.org/ip2/ip2_case_studies.cfm?study=5. The IPY project mandated that all contributing scientists implement a data management strategy as part of funded projects see the Canada IPY Data Management at http://www.api-ipy.gc.ca/pg_IPYAPI_052-eng.html. Others have written about the technological issues of open source, standards and specifications, see Andrew Williamson, “Strategies for managing digital content formats”, (2005) Library Review, vol. 54 no. 9, pp. 508-513 and the Open Geospatial Consortium Data Preservation Working Group at http://www.opengeospatial.org/projects/groups/preservdwg (accessed 21 August 2012).

40 Anthea Josias describes a number of black South African collective memory projects capturing stories in text, audio and video; remaking district maps and communities documenting apartheid histories and the post-apartheid reconciliation processes. See “Toward an understanding of archives as a feature of collective memory”, Archival Science, vol. 11, (2011) pp. 95–112, DOI 10.1007/s10502-011-9136-3. Elizabeth Nannelli discusses the Comissao de Acolhimento, Verdade e Reconciliacao de Timor-Leste (Commission for Reception, Truth and Reconciliation, or CAVR) that recorded the testimonies of East Timorese living under Indonesian rule for 25 years between 1974 and 1999. See the “Records of the Commission for Reception, Truth, and Reconciliation in Timor-Leste”, Archival Science, vol. 9 (2009) pp. 29–41, DOI 10.1007/s10502-009-9103-4. Like cybercartographic atlases, these projects are making records outside of traditional archives and have become key references and the means to transfer knowledge by and for the communities that have created them. Only the CAVR is formally archived.
recordings of this aurally transmitted knowledge and elders and communities have authoritatively endorsed each record. The communities who have contributed to and authorized them regard these atlases as living archives.

The Inuit siku (sea ice) Atlas41 for example was developed to respond to Inuit elders’ and hunters’ expressions of interest: to share their knowledge with youth; see more Inuit knowledge and northern content in the northern education system and to share their knowledge more broadly with scientists and the general public. The SIKU Atlas was compiled and developed to reflect the knowledge, stories, maps, language, and lessons shared through years of interviews, focus groups, sea ice trips, and workshops with local sea ice experts in Cape Dorset, Igloolik, Pangnirtung, and Clyde River, Nunavut. Interactive atlas features are used to enable students to explore and learn about various sea ice topics, maps, Inuktitut terminology, community-specific information, and project background, including audio, video, pictures, text, and maps.

Figure 1. The Inuit Siku (sea ice) Atlas

The Kitikmeot Heritage Society, Inuit Heritage Trust's Traditional Name Placing Project and the Gwich'in Cultural Society among others have approached the GCRC to help them map their place name databases with their collections of audio recordings of place names and video recordings of elders narrating the stories of those places. These place name atlases42 have become important knowledge transmission tools from elder to youth, are cultural geo-linguistic heritage preservation tools, have been incorporated as part of school curricula and are land occupancy records depicting the territorial extent of a

41 The Inuit siku (sea ice) Atlas (http://sikuatlas.ca/) was developed as part of an International Polar Year project called The Inuit Sea Ice Use and Occupancy Project (ISIUOP), through the collaboration of many northern, academic, government, and private industry contributors. It is a compilation of Inuit sea ice knowledge and use, as documented between 2004 – 2008; it is available at http://sikuatlas.ca/index.html (accesses 27 August 2012).

community’s land use and settlement. Naming places is part of the infrastructure of experience43 and represents social relationships, kinship, historical events and shared cultural memories. These atlases are enabling local communities to replace their histories onto the map and others to see space from a different cultural lens.

![Figure 2. Gwichin Place Name Atlas](image)

The *Cybercartographic Atlas of the Lake Huron Treaty Relationship Process* (CALHTRP)44 on the other hand is a retelling and re-mapping of the treaty process whereby historical archival records such as surveyor notebooks and diary entries, and numerous personal histories are geo-transcribed45 and aggregated into a database. This database of stories is then mapped onto old and new maps along with georeferenced photographs, historical maps, signed treaties and the historical and archival records surrounding them. In addition, some historical maps were geo-rectified according to contemporary map projections46 and layered with the oral history of events accounted by community elders or with the geo-

46 Recently historical maps in the David Rumsey Map Collection have been geo-rectified to be viewed along in Google Map and Google Earth, available at http://rumsey.geogarage.com/gmaps.html (accessed 29 August 2012).
transcribed stories from surveyor and explorer notes. These participatory and counter cartographies are enacting a post colonial mapping of Canada’s treaty system. These atlases are therefore ‘remapping’ the official historical record by reflexively using western geospatial technologies, multimedia and methods in such a way so as not to recolonize. Furthermore, they are also providing geonarratives to the making of colonial maps, making new records from old oral traditions, and by doing so put into question the ‘authenticity’ and ‘completeness’ of the traditional archival treaty record. Also, by geo-transcribing historical records, digitizing oral cultures, and re-purposing old maps in new ways, cybercartographic atlases are giving each of these records a ‘secondary provenance’, even though the provenance of the original record is provided, it becomes less important as the atlases allow for the re-interpretation of original records.

![Figure 3. Cybercartographic Atlas of the Lake Huron Treaty Relationship Process](image)

Aboriginal social memory or traditional knowledge is now being recognized in the courts for evidential purposes, to countervail archival sources and there is growing recognition that archival

48 Lori Podolsky Nordland in “The Concept of "Secondary Provenance": Re-interpreting Ac ko mok ki’s Map as Evolving Text” discusses transmedia shifts of pre-Gutenberg archival records and how these digitized records gain new life and acquire new layers of meaning. Furthermore, in the case of the Ac ko mok ki’ map, it was argued that it should be reinterpreted according to the Siksika world view and their cartographic conventions thus giving it a secondary provenance, *Archivaria*, (2004), vol. 58, pp. 147-159.

49 A famous Canadian example is the case of the Gitxsan and Wet’suwet’en First Nations who used their oral histories, which capture their geo-histories in song, performances and stories in a land rights trial against the Province of British Columbia and the federal government. They also translated their traditional knowledge into a map. Furthermore, the plaintiffs, decided that to make their claim they “had to turn the legal system, its archives, precedents, and process against itself” as they recognized they were playing in a fixed game see p. 47 of Mathew
records such as treaties, maps and surveys were modernist legal devices of British and French colonialists. As Raymond Frogner noted, these records represented “sovereignty’s positivisation” and were legal fictions since they purported to have been created among equals, which was mostly not the case. The CALHTRP in particular, puts into question the ideas of treaties as dispositive documents as the transaction did not necessarily involve willful participants.

In these three atlas examples Aboriginal elders and communities appraised the content of the maps; and also supplied, made and curated the records; and directed how these were to be cartographically rendered in collaboration with researchers and programmers at the GCRC. These atlases have become a community archive created outside the traditional archive with the use of ‘authoritative’ maps, methods and technologies, archival records, and by georeferencing traditional knowledge from ‘authoritative’ community sources onto new and old maps. In a sense they have put into question the authenticity of what ‘official’ archival documents about these spaces purport to be and have created a counter geo-narrative.

4. The Preservation of Geospatial Data

The Government of Canada has a number of ongoing geospatial data preservation strategies as seen in Table 1. These thematic geospatial data archives are part of science-based departments and data are collected as part of the business function and reporting responsibilities of their custodial institutions. Also, these data are collected according to established scientific data methods that are deeply ingrained practices embedded into the tools from which data are sensed, how quality is assessed, and in how these data are organized, described, formatted, disseminated and used. Of all the initiatives, only the Department of Fisheries and Oceans (DFO) archived data are part of a departmental science strategy. These archives are also collaborative endeavours which contain data accessioned in partnership with others, are collected as part of a cost-recovery arrangement with other institutions, are the holdings of partner institutions, are part of major collaborative research projects, are derived from sensors housed and

Raymond Frogner, in “Innocent Legal Fiction: Archival Convention and the North Saanich Treaty of 1852” demonstrated “that conventional archival interpretations identify the silences and discrepancies of the textual colonial record. But critics note that conventional archival method remains tied to its textual and sovereign paradigms. It does not address the often vague and uncertain relationship between the record and the manifold power structures, cultures, and traditions that surround the record’s formation and archival disposition”, Archivaria, vol. 70 (Fall 2010) p. 45.

Frogner, Archivaria, vol. 70 (Fall 2010) p. 47.

Oral histories surrounding the North Saanich Treaty are featured by Frogner (Fall 2010) pp. 81-86 and dispositive documents are discussed on p. 48.

The following information forms part of a larger study commissioned by GeoConnections entitled TA 2: Final Report: Geospatial Data Archiving and Preservation as part of the Science & Technology Policy Research and Analysis Resource Team Prepared for: NRCan, GeoConnections Operational Framework Team by Hicklings, Arthur and Low (HAL), authored by Tracey P. Lauriault and Ed Kennedy, (March 2011).

managed in many institutions, or are derived from a myriad private and public sector satellite networks. All but the NSDB, which contains legacy datasets, include a combination of data from active and inactive sensors, which are continuously being updated, in many cases with near-real time data. They are therefore growing collections of data that have not necessarily been set aside for disposition purposes into a traditional archive and may remain part of ongoing business practices.

Many of the archives examined disseminate and allow for the visualization of their data using specialized software while none mention the preservation of software, hardware and associated specialized file formats. These initiatives may however not be archives in the traditional sense, because they are not “an agency or institution responsible for the preservation and communication of records selected for permanent preservation”55 or a “place where records selected for permanent preservation are kept”.56 It is uncertain if the institutions within which the \textit{Earth Observation Data Services (EODS), The National Soil DataBase (NSDB)} or the \textit{Integrated Science Data Management (ISDM) Wave Data Archive} housed respectively at NRCan, AAFC or DFO, have a data preservation policy in place together with the necessary human and technological resources required to ensure the permanent preservation of these data and databases. These databases may simply be backed up. The cost recovery potential of the \textit{EODS} data would warrant investment in a good storage, retrieval and backup system, while the \textit{NSDB} could simply be a collection of agricultural data considered important by a group of dedicated soil scientists who have the skill and will to be their custodians. The \textit{ISDM Wave Data Archive}, may be the closest to being a 'traditional archive' since DFO has a \textit{Management Policy for Scientific Data}57 that includes a mandate, model, infrastructure, and human resources dedicated to the archiving and preservation of their data resources. It is presumed that the DFO \textit{IOS/OSD Data Archive} would fall under the same policy.

In terms of a preservation strategy,58 these initiatives do share characteristic elements of a preservation repository, such as:

- The means to access the data and metadata;
- Reference and context information;
- Provenance information;
- Licensing and terms of use;
- File format information; and
- In some cases are created within a data management policy (e.g. DFO).

Most geospatial data portals that store and manage the data they disseminate (e.g., \textit{GeoBase} and \textit{GeoGratis}) have similar characteristics. It is harder to assess file transfer mechanisms, preservation strategies such as data migration, emulation, etc., file name conventions, unique identifiers, adherence to standard vocabularies, backup schedules and the technology used from their websites.

While imperfect in terms of a traditional archival perspective, these are nonetheless starting points to build a more comprehensive geospatial data and mapping preservation strategy. These however only

55 Def. Archive: InterPARES 2 Terminology Dictionary http://www.interpares.org/ip2/ip2_terminology_db.cfm
56 Def. Archive: InterPARES 2 Terminology Dictionary http://www.interpares.org/ip2/ip2_terminology_db.cfm
58 Defined as “a coherent set of objectives and methods for protecting and maintaining (i.e., safeguarding authenticity and ensuring accessibility of) digital components and related information of acquired records over time, and for reproducing the related authentic records and/or archival aggregations”, in Def. Records Preservation Strategy: InterPARES 2 Terminology Database available at http://www.interpares.org/ip2/ip2_terminology_db.cfm.
represent but a very small fraction of the geospatial data produced at NRCan and the rest of the Government of Canada.\(^5^9\) They are also examples of proactive archiving practices – some of which are inherent in geospatial data portals and of databases considered being part of a records management process

Table 1. Government of Canada geospatial data preservation initiatives

<table>
<thead>
<tr>
<th>IOS/OSD Data Archive, Department of Fisheries and Oceans (DFO)</th>
<th>National Climate Data and Information Archive, Environment Canada (EC)</th>
<th>Integrated Science Data Management (ISDM) Wave Data Archive, DFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithoprobe Data Archive, NRCan, Geological Survey of Canada (GSC)</td>
<td>The Canadian Ice Service Archive (CISA), EC, Canadian Ice Service</td>
<td>National WaveForm Archive (NWFA), NRCan, Earthquakes Canada</td>
</tr>
<tr>
<td>The National Soil DataBase (NSDB), Agriculture and Agri-Food Canada (AAFC); Canadian Soil Information Service (CANSis)</td>
<td>Earth Observation Data Services (EODS), Natural Resources Canada (NRCan), Canada Centre for Remote Sensing (CCRS)</td>
<td>National Water Data Archive, EC, Water Survey of Canada (WSC) w/Archived Sediment Data</td>
</tr>
<tr>
<td>Geomagnetism Summary Plots: Archives, NRCan, GSC</td>
<td>System of Agents for Forest Observation Research with Advanced Hierarchies (SAFORAH), Canadian Forest Service (CFS), University of Victoria and other academic and government partners.</td>
<td></td>
</tr>
</tbody>
</table>

5. Geospatial Data Management Models

The DFO Integrated Science Data Management\(^6^0\) and the International Polar Year (IPY) Data and Information Service have developed data management models, which take into consideration preservation.

The ISDM Wave Data Archive (See Table 1) integrates the preservation and archiving of data from multiple organizations into an operational information management environment. The active field program of wave acquisition started in 1971, eventually discontinued in 1996, the process of submitting delayed-mode wave data has continued. In addition, ISDM acquires daily wave data from buoys operated by the Meteorological Service of Canada (MSC) at EC and manages scientific data from a wide range of sources and contains over 10 million hourly sea state and swell measurements from some 500 locations in Canada’s lakes and surrounding oceans. While these data are being used in real-time to produce weather and sea state forecasts, its archiving program ensures that the information can be used in a variety of applications requiring data over long timeframes, such as hindcast models of wave climatology used in ocean maritime navigation, engineering and climate change studies.

The archiving and preservation commitment extends across all kinds of scientific data for which DFO is responsible, as evidenced by the department’s Management Policy for Scientific Data,\(^6^1\) which

\(^{59}\) For a more detailed analysis of these initiative according to the 10 principles of digital preservation repositories developed by the Center for Research Libraries in Chicago see the HAL (2011) TA 2: Final Report: Geospatial Data Archiving and Preservation.

came into effect in June 2001. This IM Policy includes several references to the requirement for data archiving and preservation and it adheres to the following principles:

1. DFO scientific data sets… are irreplaceable, and must be protected and managed to ensure long-term availability;
2. … it is essential that DFO Science/Oceans maintain responsibility for their quality control, management, archiving and dissemination; and
3. … all scientific data collected by the DFO must be migrated to a 'managed' archive immediately after the data have been processed.

In terms of archiving, all DFO scientific data must be managed as part of an integrated system accessible through regional, zonal and national data centres and the responsibilities of the integrated system of data centres will be to:

- Ensure long-term accessibility and documentation in the event of organizational changes, retirements, etc.;
- Protect data against loss resulting from error, accident, technological change, degradation of media, etc.

When data are submitted, the DFO stresses the importance of ensuring that data are quickly migrated into a ‘managed' environment where they are properly backed up and secured from accidental or circumstantial loss, and where the supporting metadata are integrated with the data to preserve their long-term usefulness. Finally the DFO includes a data rescue program to locate and preserve scientific data that are of value to departmental programs and to identify data at risk.

The International Polar Year (IPY) project, on the other hand, was a large three-year Arctic and Antarctic scientific program, organized through the International Council for Science (ICSU) and the World Meteorological Organization (WMO). The IPY Data and Information Service (IPYDIS)62 was a global partnership of data centers, archives, and networks working to ensure the proper stewardship of IPY and related data. The National Snow and Ice Data Center (NSIDC) at the University of Colorado is a coordination office for the IPYDIS and it ensures the long-term preservation and access to IPY data. The policy63 states that:

it is essential to ensure long-term preservation and sustained access to IPY data. All IPY data must be archived in their simplest, useful form and be accompanied by a complete metadata description. An IPY Data and Information Service (IPYDIS) should help projects identify appropriate long-term archives and data centers, but it is the responsibility of individual IPY projects to make arrangements with long-term archives to ensure the preservation of their data. It must be recognized that data preservation and access should not be afterthoughts and need to be considered while data collection plans are developed.

62 IPY, International Polar Year Data and Information Service (IPYDIS), Ironically the IPYDIS site is not longer supported but copies of key documents are available from Mark A. Parsons parsonsm@nsidc.org.
The IPY exemplifies a distributed or “virtual” archive of scientific data and proactive archiving. The Service’s Web site guides digital scientific data users to a number of portals and centers that are currently providing access to IPY and related data and all data registries and repositories are required to adhere to the IPY Metadata Profile requirements. This profile was based on the Global Change Master Directory (GCMD) Directory Interchange Format, and is compliant with and has been mapped to recognized geospatial metadata standards.64

The DFO and IPY policies, practices and initiatives, like the archiving examples just discussed above, are good places to start when planning a strategy to preserve geospatial data and maps.

6. Canadian digital data and information consultations, studies, reports and initiatives

The above-mentioned geospatial data archives and data management models occurred in spite of the paucity of tangible outcomes from the 12 consultations, studies, reports and initiatives as seen in figure 4 below.

![Figure 4. Canadian Digital Data and Information Consultations, Studies, Reports and Initiatives](image)

The Research Data Strategy65 is one of the tangible outcomes of the 2002 NCSARD report process that will be discussed shortly. It is a collaborative effort between government and academia aiming to address the challenges and issues surrounding access to and preservation of data created by Canadian researchers. It is a multidisciplinary group of universities, institutes, libraries, granting agencies, and individual researchers, including several officials involved with the creation, management, dissemination

64 The standards are: Global Change Master Directory (GCMD) Directory Interchange Format (DIF); the Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM) (FGDC-STD-001-1998) and Remote Sensing Extensions (RSE) (FGDC-STD-012-2002); and THREDDS Dataset Inventory Catalog Specification Version 1.0. Other international standards are recommended such as the Open Geospatial Consortium (OGC) standards, and the ISO 19115:2003 metadata standard. See IPY Data and Information Management Service, *IPY Metadata Profile version 1.0*, available from Mark A. Parsons parsonsm@nsidc.org.

and/or funding of geospatial data,66 who recognize the need to address data management issues. While the focus is on research data, the ideas are transferable to the preservation and management of geospatial data. The approach and principles to data stewardship recommended by Research Data Canada have been echoed in many other initiatives discussed here, namely that data stewardship and management needs to be framed in a life cycle model at all stages of the data production process and making data preservation an institutional responsibility.67

Two international groups hold potential for future guidance in geospatial data archiving and preservation. The Committee on Data for Science and Technology (CODATA) Working Group on Archiving Scientific Data68 has been holding symposia and workshops on the topic and the Canadian National Committee for CODATA69 has been active in documenting and reporting scientific data activities. Members of these include geospatial data experts. The Open Geospatial Consortium (OGC) also has a Data Preservation WG,70 which aims “to address technical and institutional challenges posed by data preservation, to interface with other OGC working groups that address technical areas that are affected by the data preservation problem, and to engage in outreach and communication with the preservation and archival information community”. Reports from this WG are not yet available.

In terms of consultation, only the 2011 TBS Open Government Consultations71 yielded a report that informed an actual plan72 that was released at the Open Government Partnership in Brazil73 in the spring of 2012. The plan includes better record keeping and the lifting of restrictions to archived material at LAC but it does not include the preservation of data in the TBS Open Data Pilot Project portal nor any kind of preservation strategy for maps and data produced by government more broadly. The TBS Consultation report and the Plan also make no reference to preservation and archiving. LAC was not one of the ‘thought leaders’ to make a public submission and the complete list of individuals and organizations who submitted has not yet been made public.74 Furthermore, the Advisory Panel on Open Government75 does not include a representative from LAC, libraries, archives or science although the President and Founder of ESRI Canada is a member. Interestingly, the most popularly requested datasets in the TBS Consultation were geospatial and geospatial datasets predominate in terms of number of datasets in the Open Data Pilot Project portal.76

66 John Broome, the Chair CNC/CODATA and Head, Data Management Policy and Strategy, Earth Sciences Sector, Natural Resources Canada; Scott Tomlinson, Data Management Coordinator, International Polar Year Federal Program and Chuck Humphrey, Data Library Coordinator, Libraries, University of Alberta.

76 When the Open Data Pilot Project portal was launched, IASSIST reported that there were “782 general datasets (e.g. not geospatial) and over 260,000 geospatial datasets” available at http://www.iassistdata.org/resources/canadas-open-data-pilot-project(accessed 26 June 2011)
The Mapping the Data Landscape: Report of the 2011 Canadian Research Data Summit77 was the result of National Research Council (NRC) of Canada 2011 Canadian Research Data Summit held in September of 2011 and summit partners included Canadian IPY members.78 The report is currently being circulated to discuss the Research Data Strategy.

The 2010 IC Digital Economy Consultation79 did not result in any consolidated report or actions. The IC Consultation Paper80 circulated to frame the consultation, however, did mention improving access to research data, data discovery and open access publishing but did not explicitly mention the geomatics sector or geospatial data. A cursory examination of submissions and the idea forum81 called for the creation of a digital data and information archive and a network of trusted digital repositories.82 The summary of key findings83 however failed to mention these calls.

The Stewardship of Research Data in Canada: A Gap Analysis84 was conducted by members of Research Data Canada. The life-cycle model was used as the framework to analyze the current state of research data stewardship in Canada, which includes: data production, dissemination, long-term preservation and data discovery and repurposing. The Gap Analysis reviewed: policies; funding; roles and responsibilities; repositories; standards; skill and training; rewards and recognition systems; R&D; access; and preservation. Not surprisingly, the analysis concluded that most research data created in Canada are greatly underutilized and are at a high risk of being lost. Geospatial and research data share similar characteristics, namely: they are complex, are in multiple data formats, use non standardized rendering techniques and specialized open and/or proprietary software, are disseminated in portals, or are shared and visualized in distributed systems, datasets can be very large and data can be modeled. Geospatial initiatives, unlike research data do have uniform metadata and data quality standards are normalized.

77 The report is available at \url{rds-sdr.cisti-icist.nrc-cnrc.gc.ca/docs/data_summit-sommet_donnees/Data_Summit_Report.pdf} (accessed 27 August 2012).
78 See the report background material available at \url{http://rds-sdr.cisti-icist.nrc-cnrc.gc.ca/eng/events/data_summit_2011/index.html} (accessed 28 August 2012).
81 The most popularly voted idea was for access to and the preservation of government data assets, see \url{http://www.digitaleconomy.gc.ca/eic/site/028.nsf/eng/00172.html} (accessed 29 August 2012).
83 Summary of key findings is available at \url{http://www.ic.gc.ca/eic/site/sittgateway-portailstit.nsf/eng/00055.html} (accessed 28 August 2012).
84 Research Data Canada, (2008), Stewardship of Research Data in Canada: A Gap Analysis, available by contacting Bronwen.Woods@nrc-cnrc.gc.ca.
The 2007 LAC Canadian Digital Information Strategy (CDIS)85 report reflects the broad consensus reached at a National Summit86 held in 2006 which included contributions from more than 200 specialists some of whom are involved in geospatial data creation, use, dissemination and management. There are numerous suggested actions listed, none of which are specific to geospatial data, although GeoConnections, GeoGratis, the Canada Ice Service Data Archive and GeoBase are lauded for some of their initiatives. Environment Canada, Statistics Canada, DFO and NRCan are mentioned as institutions that produce and hold significant collections of government data. Some of the preservation assumptions upon which the CDIS was premised mirror contemporary geospatial data productions practices and issues. For example: technological change is constant; a distributed, interoperable, standards based, open and accessible strategy is key; stakeholders and communities of practice input are essential. The proposed actions could be incorporated into existing Government of Canada data portals.

The LAC 2006 *Toward a National Digital Information Strategy: Mapping the Current Situation in Canada*87 states that “the stewardship of digital information produced in Canada is disparate and uncoordinated” and “the volume, diversity and complexity of digital information is growing exponentially" while the "technologies, standards and practices that will better ensure the ongoing accessibility and integrity of digital information are not yet consistently applied." The report includes a brief description of the GeoConnections program and lists a number of other geospatial data initiatives at different levels of government in Canada in its Annexes. The report does not provide specific recommendations on how to manage these resources but it does suggest that the:

\begin{quote}

preservation of digital information requires a management response, not just a technological response. The response must be active and sustained through time and it must address the preservation of digital information from both the strategic and tactical perspectives and within the context of the management frameworks that govern the businesses of organizations themselves. It must also be comprehensive and address all facets of the required preservation infrastructure: the policies that assign accountability, the standards, practices, procedures and technologies that enable the implementation of preservation strategies, and the people that make it all happen. These issues present a tremendous challenge and must be addressed in an inclusive and collaborative manner.88

\end{quote}

MacDonald and Shearer also provide a number of next steps toward the creation of a national digital information strategy, which resemble the collaborative strategies used to create the CGDI (e.g. multisectoral, departmental and multidisciplinary collaboration, etc.).

88See MacDonald, J. and K. Shearer (2006), p.50.
In 2005 GeoConnections conducted a study on Archiving, Management and Preservation of Geospatial Data\(^9\) which provided a well rounded analysis of geospatial data preservation issues, such as: technological obsolescence; formats; storage technologies; temporal management; and metadata.\(^9\) The study also provided a list of technological preservation solutions with their associated advantages and disadvantages and recommended “as the first step in ensuring the long-term preservation and retention of valuable resources, data producers must adopt an information life cycle management approach, which will ensure that their data will be managed proactively from creation to disposition.”\(^9\) The recommendations are somewhat outdated in light of institutional changes at NRCan and of the new TBS Directives and Guidelines, irrespective, the study provides the following useful recommendations:

- Organizations should define and implement policies and practices for the creation, use, retention, dissemination, preservation, and disposition of geospatial data. Building a business case for the creation of core geospatial data products is suggested.
- Organizations must establish authoritative responsibility centers that empower individuals with the ability to define and apply the information management principles required to ensure the integrity of an organization’s geospatial data holdings. A custodianship model is an option, which provide a means to facilitate data management on the behalf of creators and users, and provide continuity in the delivery of a geospatial data infrastructure.
- Geospatial data preservation issues fall within the realm of a national information policy, and a national data management strategy. Working in partnership with the library and archives communities, government data producers need to standardize and adopt organizational policies and practices to govern the creation, use, retention, dissemination, preservation, and disposition of geospatial data to ensure its authenticity and integrity for as long as it is required for legislation, departmental statues and other laws and policies. Key geospatial advisory boards, councils, and standards organizations should work with LAC to develop a series of geospatial data policies and practice.
- The Canadian Council on Geomatics (CCOG) should create a task force and invite interested stakeholders from the academic community, private sector and other federal and provincial/territorial agencies that can collaborate to develop priority policy areas identified above.

The 2005 National Consultation on Access to Scientific Data Final Report (NCASRD),\(^9\) developed in partnership with the NRC, the Canada Foundation for Innovation (CFI), Canadian Institutes of Health Research and Natural Sciences and Engineering Research Council (NSERC), expressed the concern that: “no national data preservation organization exists, nor does Canada have any national data access strategy or policies. NCASRD participants expressed considerable concern about the loss of data, both as national

\(^9\) GeoConnections, (2005), Archiving, Management and Preservation of Geospatial Data, Page i.

assets and definitive longitudinal baselines for the measurement of changes over time.” The NCSARD report provides a comprehensive list of recommendations that include organizing a Data Force and the creation of a Data Canada secretariat.

The 2002 SSHRC National Data Archive Consultation94 is NSCARD’s predecessor, primarily discusses data in the social sciences and humanities and the preservation of data created in the course of state funded research projects. The Consultation identified important institutions, infrastructures, management frameworks and data creators and calls for the creation of a national research data archive.

To date not much has happened in terms of implementation. Currently, LAC does not have a digital geospatial data archive and there is no national network of trusted digital repositories with the explicit mandate to ingest geospatial data, research, government or private sector created data. In light of recent budget cuts at LAC, proactive archiving and records management might be the best interim solution.

7. Legislation, Directives and Policies

It is beyond the scope of this paper to discuss all applicable legislation, directives and polices. Tables 2 and 3 list of the overarching legislation, regulation, directives and policies which apply to geospatial data and Table 4 includes NRCan legislation that explicitly mention geospatial data, maps, note books, surveys or software that are to be preserved or are considered to be official government records. For a more detailed analyses of these please refer to the 2011 TA 2: Final Report: Geospatial Data Archiving and Preservation.

The Library and Archives Act (Table 2) is specific to LAC, while the others direct how Government of Canada information is to be managed and disseminated irrespective of the creating institution. These acts and regulations govern the preservation, management and dissemination of geospatial data, databases and maps, which, irrespective of their form are government information. These acts and regulations provide the context within which TBS and departmental guidelines, directives, and policies related to the management of government information are created.

Table 2. Overarching legislation and regulation that apply to geospatial data

<table>
<thead>
<tr>
<th>The Library and Archives of Canada Act (2004, c. 11)</th>
<th>Personal Information Protection and Electronic Documents Act (2000, c. 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright Act (R.S., 1985, c. C-42)</td>
<td>Canada Evidence Act (R.S., 1985, c. C-5)</td>
</tr>
</tbody>
</table>

Table 3 lists information management policies, directives, guidelines and standards at the federal level in Canada related to data archiving preservation in general and some refer to geospatial information

specifically. The primary responsibility for such policies lies with the TBS. The Standard on Geospatial Data is the only document that addresses geospatial information domain. Its objective is “to support stewardship and interoperability of information by ensuring that departments access, use and share geospatial data efficiently and effectively to support program and service delivery”. It does not explicitly reference digital information archiving and preservation, although there is a linkage between it and LAC’s File Format Guidelines for Preservation and Long-term Access, which recommends geospatial metadata standards for the preservation of and long-term access to digital geospatial information held by government organizations.

Table 3. Information policies, guidelines and standards

<table>
<thead>
<tr>
<th>TBS Directive on Recordkeeping<sup>96</sup></th>
<th>Policy on Management of Information Technology<sup>97</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS Directive on Information Management Roles and Responsibilities<sup>98</sup></td>
<td>TBS Multi-Institutional Disposition Authority (MIDA)<sup>99</sup></td>
</tr>
<tr>
<td>TBS Standard for Electronic Documents and Records Management Solutions (EDRMS)<sup>100</sup></td>
<td>LAC Guidelines: Local Digital Format Registry (LDFR)<sup>101</sup></td>
</tr>
<tr>
<td>TBS Policy on Information Management<sup>102</sup></td>
<td>TBS Standard on Geospatial Data<sup>103</sup></td>
</tr>
<tr>
<td>TBS Policy Framework for Information and Technology<sup>104</sup></td>
<td>TBS Standard on Metadata<sup>105</sup></td>
</tr>
<tr>
<td>Forthcoming Methodology associated with TBS Directive on Recordkeeping, which NRCan Records Management Group contributed.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 lists acts and regulations that specifically address geospatial information and are under the responsibility of the Minister of Natural Resources.¹⁰⁶ The *Remote Sensing Space Systems Act* and the *Remote Sensing Space Systems Regulations* were added since they impact how the Canada Centre for Remote Sensing (CCRS) manages its geospatial data sets, while the *Charts and Nautical Publications Regulations* addresses marine geospatial information. Acts and regulation mention raw data, how these are to be processed, the systems used to view and process the data and the use of cryptography. There are also mentions of registrars and catalogs. In some there are specific references to archiving, deposition, data protection plans, the number of years data are to be kept and data curation. Finally, because these geospatial datasets are critical to the management of Canada's boundaries, the health and safety of Canadians, Canada's economy and the attestation of lands, these government records can all be called into evidence to resolve international and national disputes, or any other judicial proceeding. Clearly, the geospatial datasets mentioned here must be well managed once they are created and should be preserved accordingly. The Government of Canada produces geospatial data, databases and maps in many other departments and agencies and each of these would have to adhere to acts and regulations for which they are responsible along with those in Tables 2 and 3.

¹⁰¹ See http://www.collectionscanada.gc.ca/digital-initiatives/012018-2200-e.html

The legislation reviewed in the HAL 2011 Report, demonstrated the diversity of types of geospatial data and maps, their forms, formats and associated software and systems, how they are managed, the context within which they are created, and how they are considered authentic. Also, many geospatial datasets are very highly regulated. This analysis, combined with an examination of data IP2 science data portals below, reaffirms the heterogeneous nature of geospatial data and maps and the importance of creators to be involved in the process of preserving geospatial data assets.

<table>
<thead>
<tr>
<th>Table 4. Acts and regulation governing geospatial data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Natural Resources Act (1994, c. 41)</td>
</tr>
<tr>
<td>Resources and Technical Surveys Act (R.S., 1985, c. R-7)</td>
</tr>
<tr>
<td>Canada Lands Surveys Act (R.S., 1985, c. L-6)</td>
</tr>
<tr>
<td>Canada Oil and Gas Operations Act (R.S., 1985, c. O-7) and Canada Oil and Gas Geophysical Operations Regulations (SOR/96-117)</td>
</tr>
<tr>
<td>Canada Petroleum Resources Act (1985, c. 36 (2nd Supp.))</td>
</tr>
<tr>
<td>Canada-Newfoundland Atlantic Accord Implementation Act (1987, c. 3)</td>
</tr>
<tr>
<td>Energy Efficiency Act (1992, c. 36)</td>
</tr>
</tbody>
</table>

8. LAC Guidelines pertaining to Geospatial Data and Maps

Few LAC guidelines apply to cartographic material. The 2011 *Managing Cartographic, Architectural and Engineering Records in the Government of Canada*\(^{107}\) mentions that geomatics records include systems, discs, CD-ROMs and other cartographic material in electronic formats. However, it refers to the 2001 Canadian Committee on Archival Description (CCAD) *Rules for Archival Description Chapter 5*\(^{108}\), which primarily address paper maps although general issues pertaining to digital databases and programs

are covered in the 2003 *Chapter 9: Records in Electronic Form*. The LAC Local Digital Format Registry (LDFR) *File Format Guidelines for Preservation and Long-term Access Version 1.0* includes *Geospatial* guidelines and recommends TC 211 ISO 19115 Geographic Information – Metadata and input from digital geospatial data record creators and managers is solicited. These guidelines are, however, inadequate for the kind of complex geospatial artifacts discussed in InterPARES 2 Project (IP2) or for cybercartographic atlases.

9. Research on the preservation of geospatial data in Canada

The following discusses empirical examples from a selection of InterPARES 2 Project Case Studies (Table 5) that study geospatial data, and part of the IP2 General Study 10 (GS10), which examined geospatial data portals (Table 6).

The IP2 Case Studies in Table 5 below include observational data in a variety of forms, while five also included computational data or models. All but the Cybercartographic Atlas render or store their data in a proprietary system, and data are stored in a variety of databases or in a searchable data portal while Engineering project data (CS19), the Land Registry (CS18), and some of the NASA data (CS08) are inseparable from the systems within which they have been created and/or stored. As discussed earlier when examining the CLI and the 1986 Domesday project, these findings are somewhat discouraging.

The IP2 Case Study questions regarding authenticity revealed that the prevalent concept of reliability is closely tied to reproducibility and accuracy in the physical sciences. In many cases, reliability is associated with faith in the technological systems in place or security measures related to access to the system. In terms of authenticity, it was revealed that Case Study respondents do not think of authenticity in the same way that archivists do, as the emphasis leans more towards measures to ensure

118 Trust in data sources was found to be important in both the Cybercartographic Atlas of Antarctica (CS06) and the Archeology records study (CS14), while technological integrity, validity procedures and system checks were implemented in the Mars Global Surveyor Data Study (CS08), the Computerization of Alsace-Moselle’s Land Registry (CS18) and the Most Satellite Mission project (CS26). Some of the studies controlled access to their datasets via the appointment of responsible agents (VanMap and the Alsace-Moselle Land Registry), or specialists (Cybercartographic Atlas), while peer review of data was a method used in the Mars Global Surveyor Data study (CS08). In the Engineering Objects Study (CS19), the creators did not believe their records to be authentic as they have no assurance system.
data quality. The Land Registry (CS18) may be the exception, as the system is specifically designed to ensure that each registration is authenticated in the system.

Table 5. InterPARES 2 Geospatial Data Case Studies

<table>
<thead>
<tr>
<th>Case Study Title</th>
<th>Description</th>
<th>Observational Data</th>
<th>Computational Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS06 - Cybercartographic Atlas of Antarctica</td>
<td>Online interactive and dynamic, open standards, interoperable multimedia, multisensory, multimodal atlas that renders distributed data from myriad scientific organizations.</td>
<td>Distributed observational data from myriad sources in real time, film, satellite images, tabular data, sounds, etc.</td>
<td>Data are rendered/refined into maps, charts, tables by the Nunaliit Atlas Framework</td>
</tr>
<tr>
<td>CS08 - Mars Global Surveyor Data Records in the Planetary Data System</td>
<td>Surveyor mission data records at the Planetary Data System (PDS) Space Science Data Archive.</td>
<td>Level 0 and refined planetary spacecraft mission data stored in a database with attributes and metadata</td>
<td>Software used to access or visualize the data</td>
</tr>
<tr>
<td>CS14 - Coalescent Communities in Arizona</td>
<td>Archaeological Records of the American Southwest rendered in a GIS.</td>
<td>Tabulated raw data collected from archeological digs</td>
<td>Raw data are rendered/refined into maps</td>
</tr>
<tr>
<td>CS18 - Computerization of Alsace-Moselle’s Land Registry</td>
<td>Electronic registry including digital transcription of 40 000 existing paper registries and new database entries individually signed by a judge using a PKI infrastructure combining biometric access and digital signatures.</td>
<td>Database of digitized paper land registries and attributes</td>
<td>Data and their attributes are accessed via a database using PKI technology</td>
</tr>
<tr>
<td>CS19 - Authenticating Engineering Objects for Digital Preservation</td>
<td>Examines through an engineering experiment the authentication of digital model (CAD) records using a content/message/semantic-based methodology rather than media, bit-count, or static provenancial attribute-based authentication.</td>
<td>CAD solid model files used in the design and manufacturing of mechanical piece-part assemblies</td>
<td>The files are rendered and stored in a proprietary system</td>
</tr>
<tr>
<td>CS24 - City of Vancouver Geographic Information System (VanMap)</td>
<td>An enterprise web-based map system maintained by the City of Vancouver’s Information Technology Department.</td>
<td>Land use, social statistics, city infrastructure data both internally collected and acquired from external sources etc.</td>
<td>Enterprise GIS renders data into maps, charts, and tables etc.</td>
</tr>
</tbody>
</table>

Portals, it was discovered during the IP2 science case studies, provide a framework within which geospatial data archivists can work and from which they can expand with policies, standards and metadata. Especially since, data producers and users have already appraised the data these contain or refer to as being valuable enough to be paid for, collected, described, licensed, endorsed, organized and disseminated. Also, geospatial data are increasingly being discovered and accessed via data portals.
Portals make it possible for users to “gather data germane to their own needs more readily, extract data from online and other electronic repositories, develop the information product they need, use the products for decision making, and contribute their locally gathered geoinformation and derived products to libraries or other repositories”.119

As is commonly known in the field of geomatics, portals can provide all or some of the following services: search and retrieval of data; item descriptions; display services; data processing; the platform to share models and simulations; and the collection and maintenance of data. Much but not all of the data derived from portals are raw in nature and require the user to interpret, analyze and/or manipulate them while the reasons for portal creation are one-stop-shopping, distributed responsibility over data sets, discoverability, and reduction in cost as data are stored or described once and used many times.120

Furthermore, portals are the technical embodiment of data-sharing policies. Individuals within organizations, research projects, or scientific collaborations register their data holdings in portals via an online form organized according to a metadata standard, and then choose to make their data available for free or for sale, viewing or downloading.121 Metadata standards “establish the terms and definitions to provide a consistent means to describe the quality and characteristics of geospatial data”,122 and the ISO 19115 metadata123 standard has become an international standard in the field of geomatics as have those mentioned earlier in the case of the IPY. Most of the portals examined in IP2’s General Study 10 include either very detailed metadata or rudimentary header information that contains lineage information.124

The architecture of data portals varies125 and portals can be a single enterprise sponsored portal (like a national library), a network of enterprises (like a federation of libraries) or a loose network connected by protocols (like the Web). Distributed data portals have datasets described according to a given standard, and when a request is sent to them by a given site a search is executed by a search agent126 to access or render the data into a map or some other form. Many maps and atlases for example, adhere to interoperable OGC standards and specifications, which allow for distributed mapping. In the case of Cybercartographic Atlas of Antarctica, for example, users access a module and a call is made to the British Antarctic Survey data portal in the United Kingdom and these are then rendered into a map in real time by the Atlas Framework in Ottawa and delivered directly to the user’s computer. Other examples of this type of portal are those, which use Web mapping services, such as the British Antarctic Survey. The GeoConnections Discovery Portal (IP2SF15) is an example of this type of portal. Data portals can be housed in a single physical location (e.g., Statistics Canada), and they may be virtual, housed in a set of physical locations and linked electronically to create a single, coherent collection (e.g., GCMD,

\begin{footnotesize}
\begin{enumerate}
\item[121] Lauriault (2003).
\item[124] See Table 3 Metadata on the InterPARES 2 website at http://www.interpares.org/display_file.cfm?doc=Archivaria64_Todays_Data_supplementary_tables.pdf
\item[125] National Research Council, (1999), Spatial Information Resources, Distributed Geolibraries
\end{enumerate}
\end{footnotesize}
International Comprehensive Ocean Atmospheric Dataset). The distinction between centralized, distributed or unified portals may have funding, policy and preservation implications.

There are three functional data collections/portal categories127 such as 1) research data collections; 2) resource or community data collections; and 3) reference data collections, and each have sets of characteristics that affect the type of data they contain, data contributors, funding and institutional arrangements and the kind of preservation strategies that may apply.

The GS10 portals provided a rich array of information on the topic of authenticity. Ensuring that data are of good quality and can be trusted is critical to these data portals, or else users would not rely on them. For many of the portals, the process of data control begins at the time the data are ingested into the system, made accessible via Web server sharing protocols, or described in a metadata description form. Some portals only ingest data that are derived from peer review journals; others restrict who can access the portal and contribute data.

Once data are in a particular portal, there are a wide variety of security measures in place to ensure they are not tampered with. Before data are made available, most have validation processes in place to attest to their authenticity and quality. However, there did not seem to be any mechanisms for users to assess if the datasets they downloaded or received are authentic beyond metadata and file headers. Also, the concept of the presumption of authenticity defined as “an inference as to the fact of a record’s authenticity that is drawn from known facts about the manner in which that record has been created and maintained”128 is a useful one as the context, practices, associated documentation, validation processes and authentication, and access measures would suggest that the Case Studies discussed and portals discussed here are presumed authentic from an archival perspective.

128 InterPARES 2, \textit{Terminology and Glossary}, \url{http://interpares.org/ip2/ip2_terminology_db.cfm}.
<table>
<thead>
<tr>
<th>Portal Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Geospatial Data Infrastructure (CGDI) Access Portal</td>
<td>Geospatial data such as DEM, orthophotos, air photos, satellite and radar imagery, data Services, discovery metadata, documents, Internet Maps, and Atlases.</td>
</tr>
<tr>
<td>Statistics Canada</td>
<td>Under the Statistics Act Statistics Canada is required to collect, compile, analyze, abstract and publish statistical information relating to the commercial, industrial, financial, social, economic and general activities and conditions of the people of Canada.</td>
</tr>
<tr>
<td>Long-term Ecological Research (LTER)</td>
<td>Data of Holocene barrier island geology; salt marsh ecology, geology, and hydrology; ecology/evolution of insular vertebrates; primary/secondary succession; life-form modeling of succession; online maps, photos, webcams; physical; biological, images and geographic data, software, LTER Network Data; and models.</td>
</tr>
<tr>
<td>Southern California Earthquake Center (SCEC)</td>
<td>Data sets include seismic waveforms, mostly passive source seismic data collected by broadband, strong-motion and analog instruments. LARSE I and II seismic survey, data sets from the portable deployments following the Landers and Northridge earthquakes, and data from the Anza network and SCEC borehole stations. Non-seismic data includes "survey-mode" precise GPS measurements made in southern California by various universities. The GPS data archive consists of raw GPS data, RINEX files, indices to the RINEX files, log sheets and site descriptions.</td>
</tr>
<tr>
<td>International Comprehensive Ocean Atmosphere Data Set (ICOADS)</td>
<td>Surface marine reports from ships, buoys, and other platform types. Each report contains individual observations of meteorological and oceanographic variables, such as sea surface and air temperatures, wind, pressure, humidity, and cloudiness; monthly summary statistics.</td>
</tr>
<tr>
<td>National Geophysical Data Center (NGDC : NOAA)</td>
<td>Geophysical data describing the solid earth, marine, and solar-terrestrial environment, as well as earth observations from space.</td>
</tr>
<tr>
<td>Antarctic Digital Database (ADD)</td>
<td>1:200,000/1:250,000 maps and collaborative topographic database compiled from a variety of Antarctic map and satellite image sources.</td>
</tr>
<tr>
<td>National Snow and Ice Data Center (NSIDC), NASA</td>
<td>Snow, ice and glaciological Data From satellite images remote sensing instruments, ground measurements, and data models.</td>
</tr>
<tr>
<td>U.S. Antarctic Resource Center (USARC)</td>
<td>Maps, orthophotos, satellite imagery, point data, Digital Elevation Models, Digital Raster Graphics, and aerial photography,</td>
</tr>
<tr>
<td>British Antarctic Survey (BAS) - Antarctic Environmental Data Centre</td>
<td>Antarctic research results, climate modeling and predictions. Also, oceanic, environmental, atmospheric, geoscience, water, and earth observation data from a variety of sensors and in many forms.</td>
</tr>
<tr>
<td>Global Change Master Directory (GCMD) – Global Change Data Center</td>
<td>Data inform climate change research, and datasets include models, instruments and services. It is a workspace as well as a place to store these working operational models. Disciplines include atmospheric science, oceanography, ecology, geology, hydrology, and human dimensions of climate change.</td>
</tr>
<tr>
<td>Community Data Portal at NCAR</td>
<td>CDP catalogs observational and computer simulation datasets, sources of data are related to sciences in the areas of: oceanic, atmospheric, space weather, and turbulence.</td>
</tr>
<tr>
<td>Earth Systems Grid (ESG) portal</td>
<td>Climate change models include High-resolution, long-duration simulations, data simulations, derived from UCAR/NCAR projects (particularly the Community Climate System Model (CCSM) and Parallel Climate Model (PCM) and the Intergovernmental Panel on Climate Change (IPCC). Also physical datasets that are generated directly by climate simulations.</td>
</tr>
<tr>
<td>USGS Data Portals - GEO-DATA Explorer (GEODE)</td>
<td>Geologic discipline’s programs including coastal and marine geology, earth surface dynamics, earthquake hazards, integrated natural resource sciences, mineral resources, National Cooperative Geologic Mapping, volcano hazards. Also scientific and energy related data.</td>
</tr>
</tbody>
</table>
10. Conclusion

The CLI and the 1986 Domesday rescue and salvage examples demonstrated that preservation as an afterthought is uncertain, will most likely yield only partial results, is expensive and time consuming and is often not 100 percent successful. Also, that maps and atlases designed in closed proprietary systems impede preservation and furthermore, that saving the data is not enough, as entire systems either need to be preserved or recreated to regain intended functionality and aesthetics. For every successful recovery there are many datasets, which have been permanently lost, and many more which are at risk. The two examples given were only saved because of their high profile and demonstrable scientific and cultural importance. The three cybercartographic atlases discussed became community specific archives created outside of the traditional archival system but exemplify proactive archiving in their design. In addition, these are making records by recording oral knowledge and they are contesting the validity of official treaty archival records, the transmediation of ‘official’ archival records into a digitized form and are creating conditions for secondary provenance. They are re-mapping colonial records with indigenous geo-narratives and by doing so are re-interpreting old maps and legal processes according to an indigenous worldview. By examining existing Government of Canada geospatial data archiving initiatives and data management models, it was discovered that complex sensor derived geospatial databases are being proactively preserved although none are being ‘officially’ archived in perpetuity by a recognized archival institution and most of the initiatives examined are not governed by a institutional archival or records management policy. Regardless, these are concrete cases upon which to build. With regards to consultations, studies, reports and initiatives, few address geospatial data explicitly although research data findings and recommendations are mostly transferable to a geospatial context and in some cases recommendations from the public on the topic of archiving were ignored. For the last decade substantial studies have one after the other identified the issues and what needs to be done but none of the key recommendations have been implemented. Also, Canadian experts and citizens make valuable contribution when consulted and government continues to commission studies, which in the main seem to gather dust on shelves or in government servers. The reports and studies are accessible but digital data continue to be at increasing risk and many datasets are lost with limited or no, hope of recovery. People, however, remain committed to see data being preserved and show their commitment by participating in Research Strategy Canada, CODATA and the OGC. In terms of legislation, regulation, directives and policies, the creation of government geospatial data are well covered, but these are rarely implemented and there seems to be no implementation mechanism. There are few existing geospatial data preservation initiatives, and the sorry state of LAC and the lack of trusted digital repositories and records management of data overall is of great concern. It was also seen that laws, rules, directions and policy are irrelevant in Canada unless there are dedicated resources set aside to implement them in the government bureaucracy in real terms. In addition, LAC guidelines for the preservation of geospatial data and maps cannot be effectively used by geospatial data managers, and with recent budget cuts, it is uncertain what LAC’s capacity will be to assist data producers with preservation. It would seem, that as an interim strategy, it is best that data producers and managers incorporate life cycle records management into their processes and build in proactive archiving practices. Regarding research in Canada, the IP2 project was groundbreaking with its Case Studies and General Study 10 and these have provided much insight into geospatial record making practices. These studies provided empirical evidence that geospatial data dissemination and map-making processes generally have many good practices in place, most notably metadata, open source technologies and specifications which make it easier for their products to be archived. Furthermore, data in portals have already been appraised by institutions, and archivists can build archival practices into
these. It is hoped that IP3 will implement the findings of IP2 for geospatial data and maps. Also, as seen, GeoConnections commissioned a second study by HAL to examine the preservation of its geospatial data assets, and it was argued that the CGDI is a good model within which preservation can be embedded.

Overall, we are losing digital data, maps and atlases faster than we are producing them. There are weak guidelines, technical and institutional infrastructure is sorely lacking, and limited financial resources have been allocated to operationalize laws and regulation. We have also seen glimmers of hope in some initiatives, and there is tremendous will as witnessed in consultations with experts. Archivists have portals upon which they can build, and some of the examined geospatial data preservation initiatives, portals and all the cybertographic atlases are proactively building in preservation and records management practices.

Geospatial data, maps and atlases as shown in this paper, are a fundamental source in our memory of the world. They form part of our collective memory system, they help us understand our geo-narratives, they counter colonial mappings, are the result of scientific endeavours, represent multiple worldviews, and they inform decisions. We simply need to overcome the many challenges preventing their preservation and build upon existing preservation examples and implement our laws, regulations, directives and policies.